OOOOOOOOOOOOOOO

Total Cost of Ownership

Comparison
Messaging and Streaming Data Platforms

February 2023

Sponsored by

@ Synadia

Executive Summary
Messaging and Streaming Platforms
Kafka
NATS
Subject-Based Addressing
Streams vs Topics
Consumers
Delivery Guarantee
Scaling
Testing Methodology
Test Architecture
Kafka
NATS

Test Frameworks

Test Results for Performance Equivalence

Limiting Factors
Kafka
NATS
Performance Equivalence
TCO Calculations
Infrastructure Costs

People Time-Effort Costs

© McKnight Consulting Group 2023

Messaging and Streaming Platforms TCO

Page 2

10

10

10

11

11

13

13

13

14

15

18

19

20

Messaging and Streaming Platforms TCO

Conclusion 23
About Synadia 24
About McKnight Consulting Group 25

© McKnight Consulting Group 2023 Page 3

Messaging and Streaming Platforms TCO

Over the past decade, streaming data has risen in popularity and adoption as the
demand for near real-time responsiveness and decision making has increased by
consumers, businesses, and emerging markets.

Streaming data technologies allow for efficient, scalable, and durable exchange of data
between two or more parties with use cases spanning brokered collaboration, data
ingestion, and stream processing.

The current market leader in the space of data streaming is Apache Kafka, which was
originally developed within LinkedIn and open sourced in 2011.

During the same year, the first open source version of NATS.io (NATS) was released.
NATS was originally developed as a stateless messaging technology supporting
low-latency and real-time communication patterns such as publish-subscribe and
request-reply.

In March 2021, NATS introduced a persistence subsystem called JetStream. With this
subsystem, the use cases NATS supports overlap those that were once only applicable
to Kafka.

The focus of this report is on benchmarking throughput between NATS with JetStream
enabled, and Kafka, taking into account the total cost of ownership (TCO), including
infrastructure and estimated personnel.

The OpenMessaging Benchmark framework was used as the basis for testing several
configurations for Kafka and comparable NATS configurations were used.

Our findings suggest that NATS has an 88% lower TCO while achieving up to 185%
higher throughput by broker count and up to 128% higher throughput by total IOPs
with comparable setups to Kafka.

In addition, installing, configuring, utilizing, and maintaining NATS is significantly easier.
When infrastructure and personnel costs are combined to determine total cost of
ownership, NATS requires significantly less work.

© McKnight Consulting Group 2023 Page 4

Messaging and Streaming Platforms TCO

NATS with JetStream

| 75%-185% Higher Throughput
by Broker Count
Up to o -

LOWER 3—YEAR Tco Compared to Kafka

Figure 1 - NATS TCO Comparison with Kafka

© McKnight Consulting Group 2023 Page 5

Messaging and Streaming Platforms TCO

Kafka

Kafka is an append-only write-ahead log (WAL) that does not allow for targeted
message deletions, but instead relies on compaction to reduce the size of the log. It is
a distributed log system that is based on topics, with each topic containing one stream
of messages. Each message is associated with a key, which is used for distributing the
message across the system.

Kafka is an offset-based replay system, meaning that messages can be replayed from
a certain point in the log. This is useful for applications that need to process data in
order, such as streaming applications.

Kafka also supports deduplication, limited to a single session. This means that
messages sent within the same session will not be duplicated, but messages sent in
different sessions may be duplicated.

Kafka is a powerful distributed log system that is used for streaming applications.

NATS

NATS is an open-source messaging system written in the Go programming language
and has been deployed by millions of developers globally. The core NATS server is
based on a subject-based addressing architecture that allows decoupling of
microservices and a highly scalable “fire & forget” messaging backbone, supporting
patterns like request-reply and publish-subscribe. JetStream as an embedded
persistence layer extends the core NATS qualities of services to include streaming,
at-least-once & exactly-once delivery guarantees.

Unlike Kafka you can delete specific messages and have “constraints”. For example:
keep only up to exactly X, where X can be one message per subject in the stream.

Individual messages in the stream can be erased as well as the ability to compare and
set make it more similar to a data store than just a Write-Ahead Log.

Subject-Based Addressing

NATS is based on support subject based addressing (SBA), a powerful tool for
messaging applications. It allows for messages to be captured into streams using

© McKnight Consulting Group 2023 Page 6

Messaging and Streaming Platforms TCO

subject token wildcards, without the need to pre-define the topics. This makes it easier
to filter messages and create sub-streams.

When producing messages, the key with an optional unique ID, is naturally included
inside the subject, allowing for as many tokens as needed. This makes it easier to filter
messages when consuming them from a stream. The filtering happens at the server
level, only the matching messages are sent down to the consuming application, and
that it leverages indexing for speed.

Kafka is limited to replaying from an offset or using Kafka Streams to create filtered
sub-streams. With NATS, client applications can ‘query’ the stream using subject
filters, pushing the filtering back to the nats servers. This avoids full stream scans by
the client application, as indexing is used to avoid full stream scans by the server.

NATS provides hierarchical filtering using a positional wildcard denoted by “*”, or an
“any” wildcard denoted by “>”. This filtering can be combined with time or
sequence-based offsets for the ability to start scanning in a specific point in the
stream.

Streams vs Topics

With the introduction of JetStream, NATS introduced the “stream” primitive which is
analogous to a single-partition Kafka topic. Like a Kafka partition, a NATS stream is the
unit of total order, replication, and distribution. A NATS stream is declared with one or
more subjects bound to it, and messages published on the overlapping subjects will be
received and persisted by the stream.

Each stream can be configured with a number of options such as file-based or
in-memory persistence, replication factor, placement in the cluster, and retention
policy, including enforcing max message age, total stream size, as well as queue or
interest-based semantics.

In addition, streams can be configured as a “mirror” of another stream, that can be
placed in a location closer to consuming application that requires, for example, offline
access. Another option is “sourcing” streams which can multiplex multiple streams for
consumption or can demultiplex a single stream into multiple streams. This use case is
common when aggregating data in the cloud from streams created in multiple edge
locations.

In contrast, Kafka topic configuration is primarily centered around compaction and
partition replication behavior.

© McKnight Consulting Group 2023 Page 7

Messaging and Streaming Platforms TCO

Consumers

As a parallel to the stream, NATS introduced the “consumer” primitive which is
conceptually similar to a Kafka consumer group. Although NATS has the concept of a
“subscriber,” which is initialized by a client application at runtime and does the work of
processing messages, a NATS consumer acts as a view of a stream and, on behalf of
the subscribers receiving and processing the messages, keeps track of messages
consumed, acknowledgements, and redeliveries etc.

Any number of consumers can be created per stream and are uniquely identified by a
name. They can be ephemeral or durable, be configured to start at a particular
sequence or at a particular timestamp and they support server-side filtering using an
overlapping subject with the stream. Additionally, they can be configured to be push or
pull-based, depending on what is appropriate for the use case.

As noted above, a NATS stream does not have the notion of partitions in a Kafka topic.
One constraint with a Kafka consumer group is that there can be no more consumer
group members than there are partitions in a topic. This is not the case with a NATS
consumer. A queue-based push consumer can have any number of subscribers as well
as a pull-based consumer can arbitrarily scale up or down the number of subscribers
freely.

Delivery Guarantee

Exactly once in data processing is a guarantee that a message is processed only once,
even in the event of a system failure. This is an important concept in distributed
systems, as it ensures that data is not lost nor duplicated.

NATS consumers automatically manage acknowledgements and redelivery of
messages. Multiple kinds of acknowledgements are supported including ack, nack,
term, and in-process, which control the back-off and redelivery behavior of each
message.

Configurable time window message deduplication is built-in to NATS streams, which
works across client application sessions. A unique message ID header is supplied at
publish time, which makes this possible. Support for infinite message deduplication at
the stream-level has recently been added which relies on including an identifier in the
subject and specific stream configuration.

Kafka consumer groups support ack all, and the client application needs to do its own
seek for re-deliveries. Kafka’s built-in message deduplication feature is limited to

messages sent within a single session. NATS supports synchronous double

© McKnight Consulting Group 2023 Page 8

Messaging and Streaming Platforms TCO

acknowledgement called an AckAck of the consumption of a message feature, while
with Kafka the client app must store both the offsets and the results of the
consumption to some outside system in order to be able to store them atomically.

Scaling

As already described, the unit of ordering, replication, and distribution in NATS is a
stream, whereas in Kafka it is a partition within a topic. In both systems, replicas can
be placed on a deliberate set of servers in the cluster.

In order to scale writes horizontally beyond a single stream, NATS provides a logical

way called subject mapping to deterministically map subjects to streams, which is
analogous to a Kafka partition.

Kafka natively supports partitions as part of the topic configuration and provides
mechanisms to rebalance partitions if the number changes.

© McKnight Consulting Group 2023 Page 9

Messaging and Streaming Platforms TCO

The purpose of our benchmark testing is not to declare one of these streaming
platforms a “winner” by showing it is faster, performs better, has higher throughput, or
lower latency. This type of testing is not as helpful in a total cost of ownership study,
because it only takes into account the edge of usage extremes, and not day-in-day-out
performance. Rather, we attempt to show what configurations of these platforms and
their underlying infrastructure offer equivalent performance.

Additionally, we normalized the performance of these platforms based on the
performance of a 3-node cluster of NATS running JetStream and writing three replicas
of logs to disks as the “lowest common denominator” for an equivalent use-case to
Kafka.

Test Architecture

To conduct our field test of these platforms, we setup an architecture consisting of the
following components:

Kafka
Component \ Instance Type Instance Details Log Disks
Apache Kafka 3.3.1 cbgn.large 2 vCPU 4GB RAM various gp2 and io2
Brokers c6bgn.xlarge 4 vCPU 8GB RAM between 3,000-50,000
cbgn.2xlarge 8 vCPU 16GB RAM total IOPS

Zookeeper Brokers | 3.7.1 c6gn.large 2 vCPU 4GB RAM N/A
Open Messaging cbgn.large 2 vCPU 4GB RAM N/A
Benchmark Driver
Open Messaging cbgn.2xlarge 8 vCPU 16GB RAM N/A
Benchmark
Workers

Open Message Kafka Broker

Open Message ’
Benchmark K P i
Driver Open Message o Kafka Broker | | Kafka Broker
Benchmark -
Sub Worker
Zookeeper

© McKnight Consulting Group 2023 Page 10

Messaging and Streaming Platforms TCO

NATS
Component \Y Instance Type Instance Details Log Disks
NATS Brokers 2.9.1 cbgn.large 2 vCPU 4GB RAM various io2
1 c6gn.xlarge 4 vCPU 8GB RAM between 3,000-15,000
c6gn.2xlarge 8 vCPU 16GB RAM total IOPS
NATS Bench 2.9.1 cb6gn.2xlarge 8 vCPU 16GB RAM N/A

NATS Broker
NATS Bench -

NATS Broker | | NATS Broker

Test Frameworks

For the field tests, we used two different frameworks —the Open Messaging
Benchmark (OMB) and NATS Bench. OMB' is a popular open-source tool for testing
streaming and messaging platforms. While it does have a testing suite for NATS, it
does not natively support JetStream and lacks different testing configurations. OMB is
largely a “messaging” benchmark tool and can only perform pub/sub workloads.

NATS Bench? is a utility distributed as part of the NATS CLI which can benchmark both
messaging and streaming workloads. However, it produces the same metric —
throughput, in terms of messages per second. We configured NATS Bench to behave
as closely to OMB as possible.

For the tests, we made the testing parameters constant, while varying the parts of the
Kafka and NATS configurations to determine equivalence. Those testing parameters
were:

© McKnight Consulting Group 2023 Page 11

https://docs.nats.io/using-nats/nats-tools/nats_cli/natsbench
https://openmessaging.cloud/docs/benchmarks/

Parameter

Message payload size
Publish batch size

or workers

of partitions

of replicas

Purged stream between runs

Messaging and Streaming Platforms TCO

Kafka NATS
1KB 1KB
1MB?® 100
various (2 — 10) various (2 — 10)
matched the # of brokers N/A
1or3 1or3
new topic each test yes

% linger.ms (time to wait before sending a batch to a Kafka broker) needed to be changed in order to

achieve low latency; we set it to 1 ms.

© McKnight Consulting Group 2023

Page 12

Messaging and Streaming Platforms TCO

To create a use-case scenario to give us a basis for our pricing calculations, we
assessed an approximated equivalent performance. To define “performance
equivalence,” we sought a configuration for each platform that could publish and
deliver bursts of 500,000 1KB messages a second. There are edge cases in the
streaming world of enterprises who need to sustain 1M plus messages per second.
This is not our use case. Our use case is day-in-day-out workloads of 10,000 to
100,000 messages per second, but occasionally needs to burst up to 500,000. When
self-provisioning infrastructure, the burden lies with administrators and engineers to
determine what the high-end usage scenarios are and plan accordingly.

We also were most interested in factors that have operations and cost implications:

Number of servers (cluster size)
Number of vCPUs (instance size)
Number of replicas (high availability and fault tolerance)
Storage disk performance* (disk provisioned IOPS)

While disk storage volume is a cost factor, it is not related to performance. Storage
retention requirements will vary widely by use case and organization.

Limiting Factors

Before distilling the results, we made a few informative observations when it came to

results.

Kafka

Most workloads we threw at
Kafka were 1/0O bound. Kafka
scaled linearly as we added
more provisioned |IOPS to its
persistent io2 disks. However,
once we exceeded 50,000 total
IOPS (5 brokers each with
10,000 IOPS disks), the linear
scale pattern broke, as can be
seen in the figure.

Msgs/Sec

900K
800K
700K
600K
500K
400K
300K
200K
100K

0

0

Kafka Throughput by IOPS

10K 20K 30K 40K 50K 60K 70K 80K 90K 100K
Total Provisioned |IOPS

Kafka also scaled linearly with the number of broker nodes. We exceeded our 500,000
messages per second threshold with 5 brokers; thus, there was no need to try larger

cluster sizes.

© McKnight Consulting Group 2023

Page 13

Messaging and Streaming Platforms TCO

NATS

The workloads on NATS streams were mostly CPU- or network-bound. We exceeded
our 500,000 message per second requirement with only 3,000 total IOPS on a single
node. As we added IOPS to the disks, we noted the CPUs were still carrying the bulk
of the work and the throughput did not increase with additional IOPS; thus, we were

able to leave the IOPS at 3,000 for each disk in the cluster.

In addition to testing NATS with NATS Bench using the same conditions as Kafka with
OMB (pub/sub only and disk persistence), we tested some of the other scenarios we
thought our readers might find interesting.

First, we tested NATS with memory persistence, instead of disk persistence. As one
might expect, the throughput was higher, but because our process was CPU-bound
(and not I/0-bound), it was not overwhelmingly higher.

Second, we noted that publishing messages to the stream is more intensive than
reading them. With NATS Bench, you can publish a number of messages to a stream
(or streams) in one test run and then subscribe to the stream and read them in a
follow-on run. Unsurprisingly, NATS could subscribe and read messages 4 times faster
than they can be written, which is good news for enterprises with a few publishers and
many subscribers (which we find is typical).

The OMB we used does not allow separation of publish and subscribe functions. You
must do both at the same time.

Third, we also tested core NATS (without JetStream). This resulted in over 1M
messages per second, which is also good for those who only require high message
raw throughput without persistence or robust stream requirements. NATS with
JetStream enabled covers both the messaging and streaming needs in one solution.
Not all messaging needs to be persisted or is even applicable with streaming (i.e.,
microservices).

The adjacent chart highlights and compares the additional NATS testing we performed.

© McKnight Consulting Group 2023 Page 14

Messaging and Streaming Platforms TCO

NATS Throughput
1.4M 1M
’ 1.3M
1.2M 1.1M
1.0M
1.0M
g 800K 754K
w
= 675K
% 623K 654K
= 600K 560K 573
400K
200K
0
Disk Memory Disk Memory Disk Memory
HA 5-nodes R3 HA 3-nodes R3 Single node Single node
NATS JetStream NATS JetStream NATS JetStream NATS

mPub/Sub = Sub only

Performance Equivalence

Our testing revealed a comparable configuration for both Kafka and NATS to be used in
our TCO calculations.

It is worth saying again, testing streaming data in the cloud is challenging.
Configurations may favor one vendor over another in feature availability, virtual
machine processor generations, memory amounts, optimal input/output storage
configurations, network latencies, software and operating system versions, and the
workload itself. Also the performance that you get from a cloud provider is relative to
the cost. For example, you can pay for more IOPS.

The charts below compare the testing results we found when comparing various
cluster sizes and provisioned IOPS of these platforms.

© McKnight Consulting Group 2023 Page 15

Messaging and Streaming Platforms TCO

Throughput by Broker Count

800K
700K 684K
623K
600K 573K 560K
o 500K 465K
)
w
@ 400K 356
7
= 300K o5
200K
100K
0
3K IOPS per disk | 3K IOPS per disk 10K IOPS per disk| 3K IOPS per disk 10K IOPS per disk
Single node 3-nodes 5-nodes
mKafka mNATS-JS
Throughput by Total IOPS (Replication=3)
800K
700K 684K
623K
600K 560K
o 500K 465K
@
(%]
@ 400K 356
(=]
72}
= 300K | o5
200K
100K
0
3-nodes 5-nodes 3-nodes 5-nodes
3K10PS 3K IOPS 10K IOPS 10K IOPS
per disk per disk per disk per disk

mKafka mNATS-JS

We did not need to test NATS with 10,000 IOPS, because adding additional IOPS to
our provisioned disks did not increase throughput or make sense cost-wise, since
increasing IOPS on disks increases the cost significantly. For sake of comparison, we
noted both 3 and 5 broker nodes of both Kafka and NATS with the former’s disks
provisioned for 10,000 IOPS each and the latter’s disks at 3,000 IOPS produced an

© McKnight Consulting Group 2023 Page 16

Messaging and Streaming Platforms TCO

equivalent performance. Note that the replication factor was set at 3 for these
configurations, except the single node one.

© McKnight Consulting Group 2023 Page 17

Messaging and Streaming Platforms TCO

Calculating the total cost of ownership (TCO) and return on investment (ROI) in projects
is something that happens formally or informally for most enterprise programs. It is also
occurring with much more frequency than ever. Sometimes, well-meaning programs
will use ROI calculations to justify a program but the measurement of the actual ROI
can be a daunting experience, especially if the justification ROl was assessed lightly.

This section will focus on the platform costs, including the ever-important
development, operations, and maintenance costs. If you are doing a full ROI for these
projects, you would need to consider cost of money, a probability distribution, the
n-ordered benefits and determining and using only what is tangible.

When projects are done in an agile fashion with functionality metered out, as we
suggest, it can be difficult to say when initial project costs end and costs go into
maintenance. We will use the usual enterprise standard and draw the line between
initial costs and maintenance around the point where most of the functionality is
delivered. In this context, it is very important to consider both the accumulated costs to
this point as well as the “maintenance” costs for scaling, enhancements and updates
on an ongoing basis afterwards.

(-]

\=

Qj% ROI = BEHEfIt/r + + £Q+

Tco Infrastructure Software Consulting FTE

Costs will fall into these categories:

Infrastructure - Infrastructure is the cloud hardware required to run the platform. In
most scenarios this is a separate cost through one of the major cloud providers. In our
calculations, we use the most appropriate AWS specifications (disk storage, instance
types and sizes) for each platform to achieve comparable performance.

Software — Software is the cost of running the platform from the vendor. In most
cases, we use the on-demand hourly rates for software. However, some vendors only
price their offering monthly, yearly, or with traditional perpetual-use licensing. In the
case of this study, we omitted software costs since both Apache Kafka and NATS are
open source and freely available. There are, however, enterprise and as-a-service
offerings of these platforms, which are not free. Organizations interested in the
enterprise offerings will need to consider those costs as well.

© McKnight Consulting Group 2023 Page 18

Messaging and Streaming Platforms TCO

People Time-Effort (Consulting) — Consulting models vary widely, but many projects
utilize consulting to a high degree for the initial implementation. In our calculations, we
only calculate consulting costs as a time-boxed expense depending on the type of
project or its size. For example, a streaming implementation at a small organization
may only require 6 months of consulting, but the Infrastructure, Software, and FTE
costs will go on for the life of the project.

People Time-Effort (FTE) — Employees contribute to the initial implementation and
largely to the maintenance of these projects. Their time and effort cannot be
discounted. Choosing a platform with a lower time-effort burden to build, operate, and
maintain will free these people’s time and energy to work on more strategic projects
within the organization.

Infrastructure Costs

The following table breaks down a comparison of infrastructure costs based on the
configurations we tested.

TABLE 1 Kafka NATS JetStream NATS
Infrastructure Costs 5 nodes 3 nodes 3 nodes disk 3 nodes mem 1 node disk 1 node mem 1 node
Compute

Brokers 5 3 3 3 1 1 1
Broker Size cbgn.xlarge c6gn.xlarge c6gn.xlarge c6gn.xlarge c6gn.xlarge c6gn.xlarge c6gn.xlarge
Broker Per Hour $0.17 $0.17 $0.17 $0.17 $0.17 $0.17 $0.17
Zookeepers 3 3

Zookeeper Size cbgn.large c6gn.large

Zookeeper Per Hour $0.09 $0.09

Compute Per Month $820 $568 $378 $378 $126 $126 $126
Storage

Disks 5 3 3 1

Volume (GB) 1,024 1,024 1,024 1,024

I0PS 10,000 10,000 3,000 3,000

GB Per Month $0.13 $0.13 $0.13 $0.13

IOPS Per Month $0.07 $0.07 $0.07 $0.07

Disks Per Month $3,548 $2,334 $969 $323

Total Per Month $4,368 $2,902 $1,347 $378 $449 $126 $126
3-Year Infrastructure Cost $157,246 $104,459 $48,508 $13,624 $16,169 $4,541 $4,541

There are a few assumptions worth noting. The size of each disk was chosen at 1TB,
but each organization is likely to have different storage volume requirements, based on
their retention and persistence requirements. Also, we used compute and storage rates
from AWS US East 1 region at the time of this report. Also, we omitted the root
operating system disks for the cluster nodes, which are usually small and are lower
cost general purpose storage which would contribute an insignificant amount of cost
overall.

Even with purely in-memory streams in NATS, there is still the meta state across the
cluster that needs to be maintained which requires storage. It is negligible, but a
provisioned disk would still be required.

© McKnight Consulting Group 2023 Page 19

Messaging and Streaming Platforms TCO

Also note the differences between the Kafka and NATS. NATS does not require
Zookeeper nodes. Also, core NATS, or NATS streams only using in-memory
persistence, would not require provisioned IOPS data disks at all. These differences are
shown by empty cells in the table above.

NATS JetStream % Lower Infrastructure Costs Than Kafka

Kafka NATS JetStream
3 nodes 3 nodes 1 node 1 node
% 3 nodes disk persistence memory persistence disk persistence memory persistence
-10%
20%
-30%
40%
-50%
60% 4%
-10%
-80%
90% 87% -85%
-100% -96%

With the configurations we tested for equivalent performance, we found NATS requires
less infrastructure costs, which vary by whether disk or memory persistence and high
availability are required.

People Time-Effort Costs

People’s time and effort costs are more difficult to precisely calculate and must be
estimated, given the varied nature of possible operations and maintenance scenarios,
projects, competing priorities, and other factors. Thus, we will attempt to make some
objective inferences based on what we know of the ops and maintenance differences
of Kafka and NATS.

We took inspiration from an agile scrum development project management approach.
The agile methodology is much bigger of a subject than the scope of this paper, but for
its purposes, we used a few concepts from an agile methodology in this study which
may be familiar to readers.

e Story — A story is a specific task that needs to be completed to move forward in
development of a new piece of the project or to complete an operational
objective.

© McKnight Consulting Group 2023 Page 20

Messaging and Streaming Platforms TCO

e Story Size — A story is sized according to how much time and effort required to
complete it. Sizing a story appropriately is an art and a science that requires
some experience.

e Story Points — Regardless of the sizing method used, the story size is typically
expressed as a numeric value to quantify story work and completion.

To quantify size and points, we used both the T-shirt size method and the Fibonacci
sequence. We went from the extra-small (XS) size to the extra-large (XL) size. The chart
below shows each size and the Fibonacci number assigned to it.

atiaHaHy

In our study of these platforms and witnessing their usage in the field, we have
observed a number of development and operational differences in Kafka and NATS.
The following table is a work breakdown of common build and ops tasks and the
differences in their time-effort.

Kafka NATS JetStream

Setup Cluster S 2 XS 1
Tuning Cluster L 5 XS 1
Configuring Zookeeper S 2

Configuring Kafka Streams L 5

Configuring MirrorMaker S 2

Build Effort Story Points 16 2
Creating filtered sub-streams

vs. subject-based addressing M 3 XS 1
Adding Brokers S 2 XS 1
Repartitioning new brokers XL 8

Removing Brokers S 2 XS 1
Repartitioning after removing brokers XL 8

N
w
w

Ops Effort Story Points

Hands down, NATS is easier to set up, configure, use, and maintain. The resulting
time-effort ratio for developing on NATS compared to Kafka is 0.125 (one-eighth), while
the operational time-effort ratio is similar at 0.13 for NATS over Kafka.

Again, this is an over-simplified extrapolation using some of the most basic build and
operational tasks. There are many others you will likely consider.

Using those time-effort ratios can give us an estimate of the time-effort costs for our
TCO equation. The following tables give a reasonable comparison, given those
time-effort ratios we calculated.

© McKnight Consulting Group 2023 Page 21

Messaging and Streaming Platforms TCO

To assign a monetary value to people’s time, we used a salary of $150,000 a year for
FTE and $200 per hour for consulting. This rendered a blended hourly time-effort rate

of $116.

Internal External Blended
People Costs Staff Services Rate
Average Annual Cash Compensation $150,000
Burden rate 22%
Fully Burdened Annual Labor Cost $183,000
Standard Work Hours per Year 2,080
Hourly rate $88 $200
% Mix of Labor Effort in Production 75% 25%
Build Labor Cost per Hour $116

Thus, we can use that amount and our calculated time-effort ratios to determine a
personnel cost for using Kafka versus NATS.

Migration/Build Costs Kafka NATS

Ops/Admin FTE 1.0 0.125
Total FTE 1.0 0.125
3-Year Production Costs Total $549,000 $68,625
Production Costs Kafka NATS

Ops/Admin FTE 1.0 0.130
Total FTE 1.0 0.130
3-Year Production Costs Total $549,000 $71,609

Both cases reveal a difference of about 87%.

When we put both infrastructure and people cost together to calculate total cost of
ownership, the following table shows our results. Yours may vary.

Kafka NATS JetStream
5 nodes 3 nodes 3 nodes disk 3 nodes mem 1 nodedisk 1 node mem
3-Year Total Cost of Ownership $1,255,246 $1,202,459 $188,741 $153,857 $156,403 $144,775
84% 87% 87% 88%

% Cheaper than Kafka 3 nodes

People-cost often make up the bulk of the expense in enterprise data projects. As you
can see in our analysis, the cost of infrastructure makes up only a small fraction of the

TCO.

© McKnight Consulting Group 2023 Page 22

Messaging and Streaming Platforms TCO

The majority of the workloads we threw at Kafka were disk I/O bound. As we added
more provisioned IOPS to its persistent io2 disks, Kafka scaled linearly. Once we
surpassed 50,000 total IOPS (5 brokers each with 10,000 IOPS disks), the linear scale
pattern broke down.

NATS workloads with JetStream were predominantly CPU-bound or network 1/0
bound. We exceeded our requirement of 500,000 messages per second with only
3,000 total IOPS per node. As we added IOPS to the disks, we observed that the CPUs
were still handling the majority of the work and that the throughput did not increase
with additional IOPS; consequently, we were able to maintain the IOPS at 3,000 for
each disk in the cluster.

NATS requires less infrastructure costs than Kafka. The costs vary depending on
whether disk or memory persistence and high availability are required, based on the
configurations we tested for equivalent performance.

NATS is significantly simpler to install, configure, use, and maintain. The time-effort
ratio for developing on NATS versus Kafka is 0.125 (one-eighth), while the operational
time-effort ratio for NATS versus Kafka is 0.13. So what takes a day with NATS will take
about 8 days with Kafka. When we put both infrastructure and people cost together to
calculate total cost of ownership, a NATS implementation is substantially less effort.

© McKnight Consulting Group 2023 Page 23

Messaging and Streaming Platforms TCO

Synadia was founded in November 2017 by Derek Collison to build the connective
fabric for modern distributed systems. The company is behind the popular open source
messaging & data streaming software NATS.io, used by millions across the globe.
Synadia’s diverse customer base ranges from Fortune 500 enterprises in finance, retalil,
industrial manufacturing, healthcare to innovative startups in fintech, loT, Al, ML and
gaming.

© McKnight Consulting Group 2023 Page 24

Messaging and Streaming Platforms TCO

Information Management is all about enabling an organization to have data in the best
place to succeed to meet company goals. Mature data practices can integrate an entire
organization across all core functions. Proper integration of that data facilitates the flow
of information throughout the organization which allows for better decisions — made
faster and with fewer errors. In short, well-done data can yield a better run company
flush with real-time information... and with less costs.

However, before those benefits can be realized, a company must go through the
business transformation of an implementation and systems integration. For many that
have been involved in those types of projects in the past — data warehousing, master
data, big data, analytics - the path toward a successful implementation and integration
can seem never-ending at times and almost unachievable. Not so with McKnight
Consulting Group (MCG) as your integration partner, because MCG has successfully
implemented data solutions for our clients for over a decade. We understand the
critical importance of setting clear, realistic expectations up front and ensuring that
time-to- value is achieved quickly.

MCG has helped over 100 clients with analytics, big data, master data management
and “all data” strategies and implementations across a variety of industries and
worldwide locations. MCG offers flexible implementation methodologies that will fit the
deployment model of your choice. The best methodologies, the best talent in the
industry and a leadership team committed to client success makes MCG the right
choice to help lead your project.

MCG, led by industry leader William McKnight, has deep data experience in a variety of
industries that will enable your business to incorporate best practices while
implementing leading technology.

www.mcknightcg.com

© McKnight Consulting Group 2023 Page 25

