
CASE STUDY © SYNADIA COMMUNICATIONS, INC. PAGE 1

Comparing NATS.io
with Amazon
Kinesis
More Functionality, Less Cost

By Jean-Noël Moyne, Field CTO, Synadia

TECHNICAL PAPER

PAGE 2

Introduction . 	 5

NATS: More functionality with less cost		 7

Compute costs for NATS versus Kinesis . 	 8
NATS max publication rate . . 	 9
NATS max consumption rates . 	 10
NATS sustained consumption rates when publishing and
consuming at the same time . . 	 11
NATS cost of storing the messages . 	 12
Network costs for replication with NATS . 	 13
Kinesis cost for storing the messages . 	 14
Kinesis cost of delivering the messages . . 	 15
Comparing NATS with provisioned Kinesis . 	 16
Price Difference of Provisioned Kinesis versus NATS . 	 17
Compared to On-Demand Kinesis . 	 18

Functionalities		 21

Kinesis APIs and Libraries . 	 21
NATS Functionality . . 	 22
Performance and latency . 	 26

Architectural and deployment differences		 29

Global deployment: Kinesis versus NATS . 	 29
Durability and fault tolerance: Kinesis versus NATS . 	 30
Security: Kinesis versus NATS . 	 31

Appendices . 	 32

© SYNADIA COMMUNICATIONS, INC. PAGE 3

Abstract

NATS.io, an edge-native, AI-ready platform for distributed systems and extending
AI to the edge, delivers lower costs than Amazon Kinesis, while offering additional
functionality that does not exist in Kinesis.

In a detailed comparison of the functionalities of NATS.io versus Kinesis and their as-
sociated costs, Jean-Noël Moyne, Field CTO at Synadia, argues how NATS.io, which
includes all the streaming functionalities of Kinesis Client Library (KCL)/Kinesis
Producer Library (KPL), enables you to do far more than streaming with less costs.
Moyne reaches his cost conclusions by running a series of benchmarks of NATS per-
formance and calculating what the costs associated with that performance would be
when using Kinesis. When you scale your usage of streaming, Moyne found, Kinesis
becomes more expensive than running a NATS cluster.

In terms of costs, Moyne ran benchmarks on
1.	 Compute costs: that is, the EC2 instance costs for NATS and the consumer

costs in Kinesis.
2.	Storage costs (amount of data stored and length of retention): that is, the EBS

costs for NATS and the put costs in Kinesis.
3.	Network costs: associated with replicating the data between three Availability

Zones (AZs).

According to Moyne, Kinesis costs can be orders of magnitude larger than those in-
curred by NATS based on the difference in ‘put’ and consumer costs, thus resulting
in NATS savings of between 59% and 87% of the equivalent Amazon Kinesis costs.
See Figures 12 and 13.

NATS also offers additional functionality non-existent in Kinesis. The paper provides
a detailed analysis of the functionalities of Kinesis and NATS, as well as an in-depth
description of NATS and its fundamental differences when compared to Kinesis.

NATS is highly differentiated in terms of its handling of sharding, multiple groups
of consuming application instances on a stream and data retention.

NATS offers added functionalities, for example: the ability to extend subject-based
addressing to streams; the NATS JetStream persistence layer as a NoSQL data store
(rather than just a Write Ahead Log); in-memory storage for streams, file-based per-
sistence (with optional compression); and throughput and latency.

Architectural differences, including global deployment, durability and fault toler-
ance and security are also examined. NATS offers more options for flexible global
deployment and replication between the NATS servers that is both automatic and
capable of administrative influence. While offering similar security profiles, NATS
also provides more cross-tenant data exchange flexibility.

Overall, NATS is feature-rich, comprehensive and flexible, enabling architects, de-
velopers and operators to extend connectivity for existing and AI-ready applications
at less cost across clouds and geos, on premises, IoT and edge.

PAGE 4

“So, you can do with NATS what you can do with Kinesis
but also a lot more. Cost is by far the most important
difference between the two; Kinesis becomes much more
expensive than running a NATS cluster, especially as
you scale your usage of streaming.”

© SYNADIA COMMUNICATIONS, INC. PAGE 5

Introduction

Amazon Kinesis is limited to streaming while open source NATS offers streaming
plus multiple services for more functionality with less cost.

In the Amazon Web Services (AWS) ecosystem, Amazon Kinesis Data Stream (re-
ferred to as Kinesis in this document) is meant to do one thing and one thing only:
basic streaming (that is, record messages into a stream where they can be replayed
later).

Open Source NATS not only provides streaming but also many other services, such
as request/reply microservices, key-value, object store, clustering and super clus-
tering, mirroring sourcing, MQTT, WebSocket, constraints limits, compare and set,
pub-sub and queuing. In contrast, with Kinesis, these same built-in NATS services
must be implemented by a number of other AWS services, such as Amazon SNS,
Amazon SQS, Amazon DynamoDB, AWS Lambdas, Amazon ElastiCache and Amazon
S3.

This document focuses solely on comparing Kinesis’ functionality with the stream-
ing functionalities of NATS. Please note that, in this context, Kinesis is not to be
confused with Amazon Data Firehose (previously known as Amazon Kinesis Data
Firehose), which is a higher-level stream-based (that is, built on top of Kinesis)
integration platform with a collection of connectors and message transformation
and therefore more comparable to something like Wombat.dev in the NATS world.

Figure 1: Functional Areas of NATS v. Amazon Kinesis

Streaming

Request/Replay
Micro-services

Key/Value

Object Store

Clustering
Super-clustering

Mirroring
Sourcing

Pub/Sub

Queuing

Compare
and Set

Constraints
Limits

Websockets

MQTT

NATS

Streaming

Kinesis

PAGE 6

01
“Using EFO consumers in Kinesis for low-latency
or multi-app scenarios drastically increases costs.
NATS offers 59 – 87% savings in comparison.”

© SYNADIA COMMUNICATIONS, INC. PAGE 7

NATS: More functionality
with less cost

This document provides a detailed comparison of the functionalities of NATS versus
Kinesis.

The short of the story, however, is that NATS includes all the streaming function-
alities of Kinesis KCL/KPL: so, you can do with NATS what you can do with Kinesis
but also a lot more. Cost is by far the most important difference between the two;
Kinesis becomes much more expensive than running a NATS cluster, especially as
you scale your usage of streaming.

Your first choice when using Kinesis is whether to go with provisioned or on-demand
service. They are billed differently: on-demand is priced purely on the amount of
data that you publish and consume and automatically scales the number of shards
depending on your traffic and the number of consuming applications, while provi-
sioned mode means you control the number of shards you want to provision and
that provisioning limits the maximum amount of data that you can store or consume
from the stream per shard.

In both cases, the cost is composed of two parts:
1.	 Compute costs: that is, the EC2 instance costs for NATS and the consumer

costs in Kinesis
2.	Storage costs (amount of data stored and length of retention): that is,

the Elastic Block Store (EBS) costs for NATS and the ‘put’ costs in Kinesis.
3.	Network costs associated with replicating the data between three AZs.

To illustrate the cost differences, I created a small NATS cluster on AWS using EC2
instances and EBS for storage and I measured the kind of performance you can get
out of that cluster (using the nats bench command from a client instance). All costs
are in USD, as of January 2025.

Specifically, I created a 3-node cluster using 3 EC2 c5n.xlarge instances (in US-
East1) each one in a different Availability Zone (AZ), with 3 EBS volumes for storage
(gp3) so each server writes to an EBS volume in a different AZ. Numbers would be
higher (and no network costs would be incurred) if locating all the servers in the
same AZ. Kinesis, however, claims to persist messages over multiple AZs (although
AWS does not say if it’s 2 or 3). I used c5n instance types as they have the best
network performance. NATS’ performance (like any other distributed broker-based
messaging system) is very dependent on the network throughput, not just between
the clients and the server but also between the servers themselves (for example,
when using replication, the messages are sent over the network multiple times be-
tween the servers).

Note that all the benchmark results were basically the same when using large rather
than xlarge instances sizes, but, in a production deployment, I would use at least
xlarge instances in order to have some extra headroom.

PAGE 8

Compute costs for NATS versus Kinesis

EC2 c5n.xlarge on-demand instances cost is 0.216 USD per Hour in US-East1 x
730 hours in a month = 157.68 USD per month per instance; so the compute cost is
473.04 USD per month for the cluster of 3 NATS servers.

When benchmarking a streaming system, you need to make several measurements
to get a better understanding of the performance curve:
	 The max performance numbers of how fast you can write to a stream when no

one is listening and how fast you can read (replay) messages from the stream
when no one is publishing new messages. Those numbers are interesting to
record separately because the write performance is inevitably going to be 1)
the limiting factor of how fast a single consuming application is going to be able
to read new messages, and 2) much lower as it is more work for the servers
to handle a write (replication and a RAFT vote between the three servers) than
to service a write.

	 The sustained performance numbers, where you publish messages while at the
same time have client applications consuming those messages. Those performance
numbers must be measured at different fan-out ratios as well.

	 Two numbers that are measured for each type of performance measurement:
the number of messages and the throughput, which both are dependent on the
size of the messages being published. As a result, I made test measurements
at 1KiB, 5KiB, and 10KiB.

All NATS benchmark numbers are for a stream replicated 3 times with file (EBS GP3)
using 3 separate AZs for persistence. There also is an example of the nats bench
command used to run a benchmark. Each benchmark run was for at least 1 GiB of
payload data and at varying message sizes.

Please note that benchmarking is not an exact science. These numbers are the
best recorded and repeatable results seen from a reasonable number of runs of
each benchmark. There is always some variation from one run to the next. This
variation is especially true for NATS when the number of producing or consuming
clients connections is the same or less than the number of servers in the cluster
(that is, it depends on how those few client connections finally are distributed over
the servers in the cluster, as was the case in some of those measurements).

Another factor in the variation is the use of only one client EC2 instance and therefore
located on the same AZ as only one of the servers in the cluster. AWS, however, has
limits on the amount of throughput you get per TCP connection between two AZs.
In real-life deployments, you would probably have more than one or 2 instances of
client applications publishing messages. In addition, for each application consumer,
you would have more than one instance of the client application getting messages
from the stream at the same time and, therefore, would have less perceived variation
in performance over time. Finally, when taking those numbers and comparing them
to AWS costs, I always rounded the number of MiB/s down.

© SYNADIA COMMUNICATIONS, INC. PAGE 9

NATS max publication rate

Let’s look at how fast you can publish with NATS when there are no consumers
present at the same time. The numbers in Figure 2 give an indication of real-life
‘burst’ performance. Note that in streaming use cases, you would usually have ap-
plications actively pulling those messages at the same time. Using nats bench
test --js --replicas 3 --pub 8 --size=1kb --msgs 1000000 --no-prog-
ress --purge for 1KiB messages such that 1 GiB of data is being published (ad-
justed for each message size), the results are:

1 KiB 69,592 msgs/sec ~ 67.96 MiB/sec

5 KiB 28,059 msgs/sec ~ 137.01 MiB/sec

10 KiB 17,531 msgs/sec ~ 171.20 MiB/sec

100 KiB 2,741 msgs/sec ~ 267.75 MiB/sec

Figure 2: NATS max publication rates at 1, 5, 10 and 100 KiBs

PAGE 10

NATS max consumption rates

Now let’s consider max consumption rates with NATS. How fast can you replay mes-
sages from the stream using an ordered consumer (with no filter) while there are
no new publications to the stream (the messages having already been published
ahead), for a fan-out of 1 to 4 consuming applications (each consumer gets its copy
of all the messages in the stream)? The numbers in Figure 3 give an indication of
the ‘burst’ performance since, in streaming use cases, you would usually have new
publications to the stream at the same time. An example command used is nats
bench test --js --replicas 3 --sub 1 --size=1kb --msgs 1000000
--no-progress in this case for one group of consuming application instances
with just one instance pulling messages and 1KiB messages. The numbers in Figure
3 are the sum of the throughputs for all of the consumers.

MAX CONSUME - ONLY
PERFORMANCE (AGGREGATED
FOR ALL CONSUMERS) 1 CONSUMER 2 CONSUMERS 3 CONSUMERS 4 CONSUMERS

1 KiB 408,055 msgs/sec ~
398.49 MiB/sec

723,248 msgs/sec ~
706.30 MiB/sec

783,773 msgs/sec ~
765.40 MiB/sec

699,929 msgs/sec ~
683.53 MiB/sec

5 KiB 113,474 msgs/sec ~
554.07 MiB/sec

114,158 msgs/sec ~
557.42 MiB/sec

170,521 msgs/sec ~
832.62 MiB/sec

151,914 msgs/sec ~
741.77 MiB/sec

10 KiB 57,200 msgs/sec ~
558.60 MiB/sec

57,293 msgs/sec ~
559.51 MiB/sec

86,110 msgs/sec ~
840.92 MiB/sec

76,864 msgs/sec ~
750.63 MiB/sec

100 KiB 5,791 msgs/sec ~
565.59 MiB/sec

11,008 msgs/sec ~
1.05 GiB/sec

8,713 msgs/sec ~
850.98 MiB/sec

11,577 msgs/sec ~
1.10 GiB/sec

Figure 3: NATS max consume-only performance (aggregated for all consumers)

© SYNADIA COMMUNICATIONS, INC. PAGE 11

NATS sustained consumption rates when
publishing and consuming at the same time

What throughput do you reach with NATS when publishing while, at the same time,
having consumers consuming the messages for a fan out of 1 to 4 consuming ap-
plications? An example command used is nats bench test --js --replicas 3
--pub 8 --sub 1 --size=1kb --msgs 1000000 --no-progress --purge for,
in this case, a fan-out of 1 application with just one instance pulling exactly 1 GiB of
payload data (adjusted for message size).

Note that the numbers are ‘per consumer’: so for example, with 100 KiB messages
and 4 consumers, the servers are transmitting 685.4 MiB/s of data in total. Those
numbers show that, as expected, it’s the replicating and writing of the messages
to storage that limits the throughput of a stream; at those message sizes, the NATS
servers, in this setup, can handle up to at least 4 consumers without any large de-
crease in throughput. At no time during those benchmarks did the CPU utilization
on the NATS servers ever max out; the CPU utilization was typically between 50%
and 75%. The numbers for 100 KiB are there to show that most of the throughput
is already achieved with messages as small as 10 KiB, so I will round down those
numbers and select the following message sizes and throughput values in the cost
calculations.

MAX SUSTAINED CONSUME
PERFORMANCE WHILE
MESSAGES ARE BEING
PUBLISHED (PER CONSUMER) 1 CONSUMER 2 CONSUMERS 3 CONSUMERS 4 CONSUMERS

1 KiB 51,408 msgs/sec ~
50.20 MiB/sec

49,428 msgs/sec ~
48.27 MiB/sec

50,096 msgs/sec ~
48.92 MiB/sec

49,909 msgs/sec ~
48.74 MiB/sec

5 KiB 24,739 msgs/sec ~
120.80 MiB/sec

23,123 msgs/sec ~
112.91 MiB/sec

21,899 msgs/sec ~
106.93 MiB/sec

21,663 msgs/sec ~
105.78 MiB/sec

10 KiB 14,000.5 msgs/sec ~
136.72 MiB/sec

14,595 msgs/sec ~
142.53 MiB/sec

13,333 msgs/sec ~
130.21 MiB/sec

13,733 msgs/sec ~
134.12 MiB/sec

100 KiB 1,746 msgs/sec ~
170.55 MiB/sec

1,885 msgs/sec ~
184.08 MiB/sec

1,790 msgs/sec ~
174.84 MiB/sec

1,754 msgs/sec ~
171.35 MiB/sec

Figure 4: NATS max sustained consume performance while messages are being published
(per consumer)

PAGE 12

MESSAGE PAYLOAD SIZE THROUGHPUT VALUES USED FOR
KINESIS COST CALCULATION WITH UP TO 4 CONSUMERS

1 KiB 45 MiB/s

5 KiB 100 MiB/s

10 KiB 125 MiB/s

Figure 5: NATS throughput values used for Kinesis cost calculation (up to 4 consumers)

NATS cost of storing the messages

Regardless of the size of the server instances, the storage costs with NATS remain
the same when using EBS. NATS can also use local SSDs, or even memory storage
as well. Using GP3 EBS file storage with default throughput (as was done for these
benchmarks), it is easy to calculate an estimated cost by calculating the amount
of storage required to store one day’s worth of data at the specific throughput; for
GP3, it’s $0.08 per GiB per month.

MESSAGE PAYLOAD SIZE SIZE PER REPLICA FOR 24H
AT SUSTAINED RATE

NATS STORAGE COST PER
MONTH FOR 3 REPLICAS

1 KiB 45 MiB/s*3600*24=3,888 GiB $311.40*3=$934.20

5 KiB 100 MiB/s*3600*24=8,640 GiB $691.20*3=$2,073.60

10 KiB 125 MiB/s*3600*24=10,800 GiB $864.00*3=$2,592

Figure 6: NATS cost of writing and storing messages based on message size and 3 replicas

If you want to store for longer than 24 hours, with NATS, it’s only a matter of
more data in EBS at the exact same price of $0.08/GiB/month, while, with Kinesis,
you’re charged first extended data retention rates for the first seven days and
then charged a lower GB-month rate for data stored beyond that. Also with NATS,
you have the choice to limit the retention of data to a max size of the stream (for
example, how many GB) or a max number of messages (and those limits can be
combined), rather than just by time.

© SYNADIA COMMUNICATIONS, INC. PAGE 13

Network costs for replication with NATS

While NATS can provide high availability as soon as you use 3 nodes in a cluster,
those nodes do not have to necessarily spread over 3 different AZs. Since Amazon
Kinesis claims to have 99.9% availability, therefore the assumption is that the data
is replicated over multiple AZs. Accordingly, the NATS cluster was deployed over 3
AZs. Although there are no network costs associated with sending data between
EC2 instances in the same availability zone (and higher per TCP connection through-
put limits as between AZs, the limit is 5 Gb/s), AWS does charge for:
	 Transferring data over the network between AZs
	 Sending on one side and receiving on the other side, for example, sending 1 GB

of data from an EC2 instance in one AZ to another instance on another AZ will
cost $0.02/GB.

As a message is stored into a stream, one of the nodes in the cluster will send
that data again to two other nodes in the other AZs; therefore, to those EBS costs,
one must add $0.04/GB of cross-AZ networking costs per GB of payload stored in
the stream. Actual network costs could be higher depending on how you let the
client applications connect to the cluster as a client may be sending or receiving
data from a server located in another AZ; that scenario would add to the cross-AZ
charges, but that is difficult to estimate.

MESSAGE SIZE SIZE PER REPLICA FOR 24H
AT SUSTAINED RATE

NATS STORAGE PLUS
NETWORKING MONTHLY COST

1 KiB 45 MiB/s*3600*24=3,888 GiB 934.20+3888*.04=$1,089.72

5 KiB 100 MiB/s*3600*24=8,640 GiB 2073.60+8640*.04=$2,419.2

10 KiB 125 MiB/s*3600*24=10,800 GiB 2592+10800*.04=$3,024

Figure 7: NATS network costs for NATS storage and networking monthly cost

PAGE 14

Kinesis cost for storing the messages

AWS charges you for writing messages to the stream according to the number of
‘Put Payload Units per month cost’ you need depending on your message size and
rate of publication. Here is the table with Kinesis for the throughput values we se-
lected at each message size as calculated by the AWS pricing calculator.

MESSAGE SIZE @ RATE PER SECOND AMAZON KINESIS PUT PAYLOAD UNITS PER MONTH

1 KiB @ 45000 (45 MiB/s) $1,655.64 ($36.79 per 1 MiB/s)

5 KiB @ 20000 (100 MiB/s) $735.84 ($7.36 per 1 MiB/s)

10 KiB @ 12500 (125 MiB/s) $459.90 ($3.67 per 1 MiB/s)

Figure 8: Amazon Kinesis monthly storage costs

Note that ‘put’ costs depend on the overall throughput and your message size,
with the cheapest price being for a message size of exactly 25 KiB (or a multiple of
25KiB). Thus, in our scenarios, there is this significant decline in ‘put’ costs as the
message size increases towards 25 KiB. To demonstrate the variation in Kinesis
‘put’ costs depending on message sizes rather than throughput, consider the wide
variation of costs in Figure 9:

MESSAGE SIZE @ RATE PER SECOND AMAZON KINESIS PUT PAYLOAD UNITS PER MONTH

500,000 messages/s at 1 KiB payload $18,396.00

50,000 messages/s at 10 KiB payload $1,839.60

20,000 messages/s at 25 KiB payload $735.84

20,000 messages/s at 26 KiB payload $1,471.68

10,000 messages/s at 50 KiB payload $735.84

Figure 9: Amazon Kinesis’ monthly ‘put’ cost for similar throughput according to message size

Note that these numbers are just the ‘put’ cost and not inclusive of the cost associ-
ated with the number of shards. This number of shards is dictated by the publication
rate or the throughput (the max throughput per shard is 1 MiB/s or 1000 messages/s
for writes, whichever limit you hit first). The number of shards you need to sustain
your ingress is a minimum as you may need even more shards depending on your
egress rate (that is, your fan-out).

https://calculator.aws/#/createCalculator/KinesisDataStreams

© SYNADIA COMMUNICATIONS, INC. PAGE 15

Kinesis cost of delivering the messages

Pricing for getting the messages from Kinesis depends on three factors:
1.	 The rate at which you want to be able to consume the messages
2.	The size of the messages (which dictates the number of shards you will need to

buy for that throughput)
3.	The number of groups of consuming application client instances (that is, the

number of ‘consumer applications’ in the AWS pricing calculator).

The Kinesis egress costs start with a baseline and peak costs: in this case, I entered
the same value for the number record/s for both base and peak (with 10% ‘buffer for
growth and to absorb un-expected peaks’).

Kinesis non-enhanced versus enhanced fan-out consumers

The cost of delivering messages in Kinesis will depend greatly on the number of
consumers you will have for the stream and whether you need Enhanced Fan-Out
(EFO) consumers or not.

In practice with Kinesis, if you have more than one consuming application on a
stream in real time, you need to use an EFO for each application. For example, as
the instances of the KCL client application share the same lease table, only one
application (group) can process each shard’s data unless you use EFOs. Even if you
don’t use KCL, AWS asks you to consider using Enhanced Fan-Out (EFO) consum-
ers if you need 70ms latency and have more than two consumers.

Regular non-enhanced consumers all share the same total read throughput of 2
MiB/s per shard. So, in our example of 45 MiB/s throughput with 50 shards, you can
only have up to 2 regular consumers on the stream. Adding more regular consum-
ers without also increasing the number of shards would not meet the performance
requirement of the traffic flow (this is reflected by “N/A” in the tables below).

On the other hand, EFO consumers scale as consumers register to use enhanced
fan-out. Each consumer registered to use enhanced fan-out receives its own read
throughput per shard, up to 2 MiB/sec, independently of other consumers. They
also provide lower latency of an average of 70 ms whether you have one consum-
er or five consumers. Regular consumers have an average of around 200 ms if
you have one consumer reading from the stream; this average goes up to around
1000 ms if you have five consumers. EFO consumers costs are composed of an
‘Enhanced Fan-Out consumer-shard hours cost’ and an ‘Enhanced Fan-Out data
retrieval cost.’

PAGE 16

In contrast with NATS, there are no shards and no throughput limits per consumer
[the performance depends mostly on the network (and disk) throughput available to
the server processes]. Typical latencies even with multiple consumers on the stream
are in the very low number of milliseconds or less. So, I would contend that the con-
sumers that you get out of the box from NATS are the equivalent of EFO consumers
in Kinesis. See Appendix A for the tables showing the calculations for the retrieval
costs for each message size with fan-outs from 1 to 4 consuming applications.

Comparing NATS with provisioned Kinesis

NATS’ total costs consist of the compute, storage and network costs

MESSAGE SIZE @ RATE PER SECOND NATS’ TOTAL COSTS FOR UP TO 4 CONSUMERS

1 KiB @ 45000 (45 MiB/s) $1,562.76

5 KiB @ 20000 (100 MiB/s) $3,192.24

10 KiB @ 12500 (125 MiB/s) $3,797.04

Figure 10: NATS total storage, compute and network monthly costs for up to 4 consumers

Kinesis total costs consist of the ‘put’ charges above plus the retrieval costs accord-
ing to the number of consumers and number of EFOs (see Appendix A). Provisioned
Kinesis comes with up to 2 non-EFO customers for free; you can technically have
up to 2 regular (but high latency) consumers in addition to the EFO consumers. See
the column with 0 EFO in Figure 11 but, in practice, you probably will need one EFO
consumer per application when going beyond one application.

0 EFO
CONSUMER

1 EFO
CONSUMER

2 EFO
CONSUMERS

3 EFO
CONSUMERS

4 EFO
CONSUMERS

1 KIB @
45000 (45 MIB/S)

$2,203.14 $4,216.8 $6,230.45 $8,244.11 $10,257.76

5 KIB @
20000 (100 MIB/S)

$1,918.44 $6,359.17 $10,799.90 $15,240.63 $19,681.36

10 KIB @
12500 (125 MIB/S)

$1,938.15 $7,489.07 $13,037.99 $18,590.90 $24,141.82

Figure 11: Kinesis total storage costs based on put charges plus retrieval costs according to
the number of consumers and number of EFOs

© SYNADIA COMMUNICATIONS, INC. PAGE 17

Price Difference of Provisioned Kinesis
versus NATS (% change from Kinesis to NATS)

As you can see in Figure 12, in the special case of 0 EFO consumers, Kinesis is
cheaper than NATS for the larger message sizes. The Kinesis costs in that 0 EFO
column are just the cost of the shards plus the number of put payload units (which,
as shown in Figure 9, becomes more expensive the further away from a multiple
of 25 KiB your message size is). In this case, you also will still need to increase the
number of shards as you add non-EFO consumers.

But as soon as you have more than one KCL consuming application on the stream or
need somewhat reasonable latency, you must use EFO consumers instead. There
the Kinesis costs are orders of magnitude bigger than those incurred by NATS
drawing the difference in ‘put’ costs and resulting in savings of between 59 and
87% of the equivalent AWS costs.

0 EFO +
1 NON-EFO
CONSUMER

1 EFO
CONSUMER

2 EFO
CONSUMERS

3 EFO
CONSUMERS

4 EFO
CONSUMERS

1 KIB @
45000 (45 MIB/S)

$640.38
(-29%)

$2,809.56
(-66%)

$4,823.21
(-77%)

$6,836.87
(-83%)

$8,850.52
(-86%)

5 KIB @
20000 (100 MIB/S)

-$1,273.8
(+66%)

$3,812.53
(-60%)

$4,823.21
(-76%)

$12,693.99
(-83%)

$17,134.72
(-87%)

10 KIB @
12500 (125 MIB/S)

-$1,858.89
(+95%)

$4,424.03
(-59%)

$8,253.26
(-76%)

$15,525.86
(-83%)

$21,076.78
(-87%)

Figure 12: Price difference of a provisioned Kinesis compared to NATS,
using % change from Kinesis to NATS

PAGE 18

Compared to On-Demand Kinesis

One of the first choices you must make with Kinesis is whether to go with Provi-
sioned or On-demand service (that is, assuming you can use KCL/KPL. If you want
to re-implement your version of them, your only option is static provisioning).

One advantage of On-Demand kinesis is that you do not have to worry about the
number of shards. But you will experience a not-so-speedy reaction time when
scaling up, which is ‘within minutes.’ At the same time, you have to pay for this
convenience as the costs can be much higher. If you were going to have sustained
traffic, then you could calculate the number of shards you need and you would not
use the Provisioned service

So while not perfectly comparable to the cost of an on-demand service, the pro-
visioned service is still an interesting data point that brings some perspective to
those cost numbers.

One difference with provisioned is that you pay for each of the first 2 (non EFO)
consumers (see Appendix B for detailed breakdown). So, in Figure 13 with One De-
mand Kinesis, “0 EFO consumer” means there was just one regular consumer, and
the rest of the columns are with only EFO consumers.

0 EFO
CONSUMER

1 EFO
CONSUMER

2 EFO
CONSUMERS

3 EFO
CONSUMERS

4 EFO
CONSUMERS

1 KIB @
45000 (45 MIB/S)

$12,155.74
(-88%)

$13,283.56
(-89%)

$18,922.63
(-93%)

$24,561.71
(-94%)

$30,200.78
(-95%)

5 KIB @
20000 (100 MIB/S)

$27,557.63
(-91%)

$30,063.89
(-92%)

$42,595.17
(-94%)

$55,126.45
(-95%)

$67,657.73
(-96%)

10 KIB @
12500 (125 MIB/S)

$22,026.72
(-86%)

$37,690.82
(-92%)

$53,354.92
(-94%)

$53,354.92
(-94%)

$84,683.12
(-96%)

Figure 13: Price difference of On-Demand Kinesis versus NATS
(% change from Kinesis to NATS)

© SYNADIA COMMUNICATIONS, INC. PAGE 19

Finally, the other difference with a provisioned NATS cluster is that you are not
being charged by the number of streams you are using (or the number of subjects
stored in a stream), just like you are not being charged by the number of consumers
on a stream. For example in this setup, you could easily have a few more streams
(although not necessarily with the same amount of traffic) for the same price (com-
pared to Kinesis where you have to pay again for every stream you create).

Additional DynamoDB costs

KCL also makes use of DynamoDB under the covers, which will incur some additional
costs on top of your Kinesis costs.

PAGE 20

02
“Essentially, NATS covers all functionalities offered by KCL
and KPL (except batching, which you have to do yourself):
you can create streams, record published messages
into those streams, have the message in those streams
delivered or replayed to client applications, and a lot more.”

© SYNADIA COMMUNICATIONS, INC. PAGE 21

Functionalities
Kinesis APIs and Libraries

The very first thing to realize about Kinesis APIs is that they exist at 3 different levels:
1.	 At the lowest level, the core base API is HTTP
2.	At the next level, the AWS SDK is a thin layer exposing the HTTP API in various

languages
3.	Finally, there is the Kinesis Producer Library (KPL) and the Kinesis Client Library

(KCL).

Kinesis HTTP API

The Kinesis HTTP API is the lowest level of functionality, but it is available on any lan-
guage and platform that can make HTTP requests. Its functionalities can be broadly
categorized as basic low-level streaming. The Kinesis HTTP API allows you to:
	 Create, delete, list and tag streams, adjust the retention period
	 Get and set resources policies, start and stop stream encryption (see security

section)
	 Add, remove, split and merge shards for a stream
	 Put records
	 Retrieve a shard iterator (pointer) to use to read records from a specific shard
	 Register/de-register stream consumers that can then subscribe to shards.

And that’s it! Using the HTTP API, the functionality of Kinesis is very limited with
many things that you will need to implement yourself in the client application code.

AWS SDK

The AWS SDK exposes those HTTP API calls in a library, allowing you to access
the functionality exposed by the Kinesis HTTP API, directly in the language of your
choice without having to worry about the details of making HTTP API requests (for
example, all the headers including the AWS authorization signature). In general, the
AWS SDK is recommended for most use cases due to its simplicity and abstraction.

The AWS SDK is only a thin layer on top of the HTTP API. There are still functionalities
that you will need to handle in your code:
	 Automatic shard assignment to consumer instances: inter-worker coordination

logic to share shard processing. monitoring for changes in shard structure,
shards reassigning

	 Failover and load balancing of the consumers for the shards
	 The number of shards changing with no need for manual intervention
	 Checkpointing: store the offsets yourself somewhere and handle state recovery
	 Doing retries for transient errors (for example, handling ‘limit exceeded’ errors

each time you hit the limit of the number of operations per second).
	 Implement logic to ensure ordered processing yourself.

PAGE 22

Kinesis Client Library and Kinesis Producer Library

Because of the limited functional scope of the HTTP API and the AWS SDK, and
to move to a level of functionality closer to what you get from Apache Kafka for
example, there are two higher level Kinesis client libraries that implement the listed
functionalities that are missing from the AWS SDK: the Kinesis Client Library (KCL)
that simplifies distributed consumption from a stream, and the Kinesis Producer
Library (KPL) that simplifies data production to a stream by handling batching,
aggregation, retries and error handling.

While the AWS SDK is available for many languages (Java, Python, JavaScript, C#,
Go, Ruby, PHP, C++ and .NET plus a couple of others that are community support-
ed), KCL/KPL are written in Java. Using KCL/KPL from one of the other languages
they support (Python, Node.js, C# and Ruby) means running a KCL/KPL process
on a JVM that the client-native libraries in other languages communicate with via a
Multi-Language Interface (JSON over standard input/output).

In comparison, NATS via Synadia maintainers has officially supported native (no
need to talk to a background JVM over stdio) client libraries for all those languages
plus Rust, Swift, Elixir and Java Vertx (PHP is community contributed).

The set of functionalities implemented by KCL arguably brings Kinesis from the
very basics of the HTTP API to a much more usable level comparable to what is
offered by Apache Kafka. So, how do KCL streaming functionalities and NATS’s
streaming functionalities compare?

NATS Functionality
Common NATS functionalities

Essentially, NATS covers all functionalities offered by KCL and KPL (except batching,
which you have to do yourself): you can create streams, record published messages
into those streams, have the message in those streams delivered or replayed to cli-
ent applications, and a lot more. The messages in a single stream can be distributed
in some way between multiple instances of the client application consuming those
messages, making it very easy to scale those consuming applications.

In terms of message consumption both Kinesis and NATS support:
	 Replay of the messages from: the start of the stream, a specific point in time, or

just the new messages.
	 Keeping the messages in the stream available for replay for a certain period of

time.
	 Stream group of consumers-type functionality: the automatic distribution of the

stream’s messages between client application instances, with the ability to add
or remove client application instances at any time from the stream and the abil-
ity to stop and restart applications without having to worry about checkpointing
message sequence numbers.

© SYNADIA COMMUNICATIONS, INC. PAGE 23

NATS fundamental differences

Sharding

Sharding is a major concern in Kinesis provisioned mode because of the direct cost
implications.

While the KCL abstracts the current number of shards a stream has from your client
application code, it is still something that, in provisioned Kinesis, you need to worry
about and manage administratively for every single stream.

The two factors that affect the number of partitions you need to provision for a
stream in Kinesis are:
1.	 The parallelization factor that your client applications will need to sustain the

amount of traffic to consume (that is, the max number of instances you need to
run at any time): you can only have one client application instance consuming
from a stream shard at a time per application. If you need to scale up, you can’t
just increase the number of client applications, you also may have to increase
the number of shards for that stream.

2.	The ingress and egress data rates you will need: there are hard limits to both
the amount of data and number of API requests that you can make to a stream
shard, for example, 1MiB or 1000 records per second for writes, 2MiB per second
for reads and 5 GetRecords API per second.

In contrast, sharding is simply not required in NATS to distribute a stream’s messages
between a group of client application instances; the client application instances can
scale elastically from 0 to any number without having to worry about the number of
partitions. Should you need consistent hashing-based partitioning of a stream, it is
just an admin operation to automatically insert a partition number to the messages
recorded in a stream using the subject mapping functionality.

More than one group of consuming client applications
instances on a stream

With NATS, you can have as many groups of consuming client application instances
(‘consumers’) as you want on a given stream. While with Kinesis, the first group is
free, but if you care about latency or need more than one consumer you will need
to buy EFO consumers, thus incurring much additional costs.

Data retention

By default, the retention period of Kinesis is 24h exactly (it cannot be less). You
are then charged extended data retention rates for the first seven days and then
charged a lower GB-month rate for data stored beyond seven days up to your
specified retention period (with a maximum of 8760 hours (365 days)). There are
no other options available besides time to control the amount of data being re-
tained for replay.

PAGE 24

NATS, on the other hand, also can limit the retention of messages in the stream
by size (number of messages or data size of all the messages in the stream), and
by number of messages per subject (for example, you can limit the retention to 1
message per subject, which allows you to use a stream as a ‘last value cache’). And
when using time as the limit, you can set the limit to be as small (down to 1 second)
or as large (up to forever) as you want.

NATS additional functionalities

Besides the fact that it is partition-less, NATS has 2 major architectural differences
with Kinesis (and other streaming systems, for that matter) from which a number of
additional features derive.

NATS extends subject-based addressing to streams

NATS is unique in extending subject-based addressing to streams: the messages
stored in its streams have a subject name associated with each message. Streams
can store messages on any number of subjects and can directly capture messages
over whole hierarchies of subject names. For example, you can create a stream
that captures messages using the filter “orders.>” and then publish your customer
order messages with subjects of the form “orders.<customer id>.<order id>.” You
do not need to know ahead of time the list of customer ids and order ids for each
customer.

On the consumption side, NATS stream ‘consumers’ (that is, groups of consuming
application instances) can have any number of subject filters, and the filtering of
the messages according to those filters is performed by the NATS servers (only the
matching messages are transmitted to the consuming applications). And you can
also create consumers that only deliver the last messages for each of the subjects
in the stream. For example, to get all the messages for all the orders from customer
one, you would create a consumer with a subject filter of “orders.1.*”

In comparison, Kinesis has no concept of subject-based addressing: each stream
has a single name (like a topic) and while the applications publishing messages to
the stream can specify a key for each message, this key is only used to compute
the shard the message gets assigned to. You must create streams before you can
publish to them and the streams have to be created before you can subscribe to
them. There is no concept of filtering the messages in a stream at consumption
time (not even by the message’s key).

To do in Kinesis the equivalent of what you can very easily do with NATS using
subject-based addressing, you would have to implement in your application code
the following functionalities (none of them being especially simple or easy to im-
plement properly):

© SYNADIA COMMUNICATIONS, INC. PAGE 25

	 Every time you publish a message, check if a stream already exists for that
topic and create it if it doesn’t (which has a cost impact since you are billed per
stream and per shard on the stream if in provisioned mode)) before sending the
message to Kinesis.

	 Build the current list of existing streams and continuously monitor for new
streams being created (or existing ones being deleted), to create groups of
consumers on all the streams (topics) you may be interested in.

	 Because you are charged per stream for each hour the stream is defined, you
may also want to implement something that collects streams as garbage when
they are un-used to avoid your monthly bill continuously growing over time.

The NATS JetStream persistence layer is a NoSQL data store
rather than just a Write Ahead Log

Kinesis only offers the functionalities of a Write Ahead Log: you can add messages
to the head of the stream (without constraints) and messages are dropped from
the tail of the stream as time advances, and that’s it. In contrast, NATS JetStream
has the functionalities not just of a WAL but of a proper NoSQL data store. Specif-
ically, with NATS you can:

	 Delete any message in the stream (and not just trim the tail end of the stream
with the advance of time) either explicitly by sequence number or by purging
messages according to a subject filter.

	 You can have stream limits defined besides the retention time (max age):
number of messages, size, number of messages per subject (for example, you
can configure a stream to keep only 1 message for each subject).

	 You have the choice of how to react when a limit is breached by a new
message being published: either deleting old messages to be able to accept
new messages or refusing the new message (like a ‘constraint’ in a SQL
database). Kinesis (or any other streaming system besides NATS for that
matter) has no concept of limits or of being able to reject published messages.

	 Set a specific TTL for each message that overrides the stream overall max age
setting.

NATS additional streaming features

NATS supports in-memory storage for streams, as well as file-based persistence
(with optional compression).

When consuming (that is, receiving and successfully processing) messages from
a stream, they can be individually acknowledged by the client application, with
automated re-delivery if not positively acknowledged within a period of time, plus
the ability to ‘terminate’ or ‘negatively acknowledge’ (with the option to specify a
back-off time for the re-delivery attempt) each message.

PAGE 26

Streams have message de-duplication features, which you need to have along with
individual message consumption acknowledgement to achieve ‘exactly-once’ rather
than ‘at-least-once’ message delivery and consumption.

This, in turn, is part of the ability in NATS to use a stream as a distributed ‘work
queue,’ where messages are distributed and then automatically deleted from the
stream as they are successfully ‘consumed’ (individually acknowledged by the con-
suming application). Kinesis is strictly a streaming service and doesn’t do queueing,
as that’s the job of the SQS service in the AWS eco-system.

You can also do ‘compare and set’ publications to streams (that is, optimistic con-
currency access control of ‘writes’ to the stream) where the publication will suc-
ceed only if the stream’s current last sequence number matches the one specified
in the publication, or only if the sequence number of the last message in the stream
that matches a specified subject filter matches the one specified in the publication.

You can do ‘roll-up’ publications to a stream, allowing you to publish summary
events or aggregate state messages that automatically (and atomically if also using
compare and set at the same time) deletes all the prior messages (or all the prior
messages with the same subject) in the stream.

You can create streams that ‘mirror’ another stream, or that ‘source’ other streams.

You can define subject transformation mappings using functions to slice, split,
drop or insert subject tokens (for example, insert a partition number that is calcu-
lated using a consistent hash of one of more of the tokens in the subject) that are
automatically applied to messages as they are ingested (and sourced or mirrored)
into the stream.

Performance and latency
Throughput: Kinesis versus NATS

Theoretically, there is no upper limit to the number of messages per second that
you can ‘put’ or get from Kinesis other than what you can afford to spend as it is a
managed service.

In Kinesis provisioned mode, the maximum throughput is strictly derived from the
number of shards on the stream: each shard is limited to 1MiB per second or 1,000
records per seconds write throughput and up to 2 MiB per second or 2,000 records
per second read throughput. To get more throughput, you just buy more shards, up
to the default AWS shard quota at 200, except in 3 regions (US East (N. Virginia),
US West (Oregon), and Europe (Ireland) where it is 500. To go beyond those num-
bers, you need to request a quota increase for your AWS account.

© SYNADIA COMMUNICATIONS, INC. PAGE 27

In Kinesis on-demand mode, new streams are initially created with a capacity of 4
MiB per second of write and 8 MiB per second of read throughput and can auto-
matically scale up to 200 MiB per second of write and 400 MiB per second of read
throughput, except in the same 3 regions – (US East (N. Virginia), US West (Oregon),
and Europe (Ireland – where it can scale up to 10 GB per second write and 20 GB per
second read (if you submit a support ticket).

Regardless of provisioned or on-demand mode you can only create up to 20 reg-
istered ‘consumers’ (groups of consuming application instances) per stream (the
enhanced fan-out limit).

There are also no hard-coded limits to the number of messages you can ‘put’ and
get from NATS. Practically, there is a limit of how many messages per second you
can store into a single stream (it can go into the hundreds of thousands per sec-
ond), and another of how many messages per second you can get or consume
from a single stream (it can up to the millions per second range), which depends
on many factors. Some of those factors are configurable (for example, the number
of replicas for the stream) but ultimately the performance depends on the infra-
structure the NATS servers are deployed on (CPU and i/o speed) and the network
bandwidth available (or the max allowed for a VM by the operator in clouds). You
can also automatically spread your traffic over more than one stream, and those
streams are distributed over the NATS servers in your cluster, which you can scale
horizontally (so very similar to how you can scale Kinesis streams in provisioned
mode by using more shards).

Latency: Kinesis versus NATS

Kinesis does not technically ‘push’ messages in real-time to client applications, only
to AWS Lambdas. To get close, the clients must continuously pull for new messages
and, while the KCL library (its JVM process) does this continuous polling for you, the
Kinesis hard limit of a max of 5 API calls per second per shard still applies. Kinesis
is designed for throughput rather than low latency, meaning that Kinesis message
delivery latency is typically measured in seconds and can increase considerably in
high traffic scenarios. If you want any kind of lower latencies than ‘seconds,’ you
can get down to the 70ms to 500ms range if you buy EFO consumers, but that has a
significant impact on cost.

In contrast, NATS latencies are a completely different order of magnitude as it is a
fully-fledged subject-based-addressed, low latency messaging system at its core
and is designed to deliver messages with latencies measured in micro-seconds
with real-life latencies over LANs typically

PAGE 28

03
“NATS servers can be deployed as ‘leaf nodes’ meaning
that you can ‘extend’ the NATS streaming service all
the way to the edge by deploying NATS leaf node servers
that connect back to your cluster or super-cluster in
the cloud or in your data centers.”

© SYNADIA COMMUNICATIONS, INC. PAGE 29

Architectural and
deployment differences
Global deployment: Kinesis versus NATS

Kinesis is designed to operate within a single AWS region by default. To replicate
data from a Kinesis instance in one region to another in another region additional
mechanisms or services are required, since you need to write an application that
consumes messages in one region and re-publishes them in other regions (for
example, using AWS Lambdas). There is no way to ‘extend’ Kinesis outside of an
AWS region; you cannot deploy Kinesis servers in another cloud provider, into your
premises or to the edge.

In contrast, NATS has many features related to deploying the service globally: you
can deploy multiple clusters (that is, one per region) and connect those clusters to-
gether into a ‘super-cluster.’ Client applications can transparently use any service
or stream over a ‘super-cluster’ regardless of which cluster the client is connected
to. Mirroring of streams from one cluster to another is built-in to the NATS servers,
so there is no need to use (or write) anything.

Furthermore, NATS servers can be deployed as leaf nodes meaning that you can
‘extend’ the NATS streaming service all the way to the edge by deploying NATS leaf
node servers that connect back to your cluster or super-cluster in the cloud or in
your data centers. And because mirroring and sourcing happens in an asynchro-
nous but guaranteed no-loss store and forward manner, those leaf nodes do not
even need to always be able to connect to the hub cluster(s).

PAGE 30

Durability and fault tolerance:
Kinesis versus NATS

Both NATS and Kinesis provide fault-tolerant durability of the storage of messages
through clustering and data replication. Kinesis’s replication is entirely handled by
AWS; it is a black box with no knobs that is built around replicating the data be-
tween the availability zones of a region.

With NATS, the replication happens between the NATS servers assigned to service
the stream and is also handled automatically, but you have some things that you
can administratively influence.

You can choose file or in-memory persistence for the stream: when selecting the
file, the data is persisted by each server assigned to service the stream wherev-
er each server is configured to write its files to (which can be a local drive or an
EBS volume). You can select the replication degree: 1 (no replication), 3 or 5 (and
adjust it at any time later). You can also influence the selection of the nodes that
will replicate a stream using ‘server tags’ to affect the placement of streams, for
example, to ensure that each server replicating the stream is located on a different
availability zone.

© SYNADIA COMMUNICATIONS, INC. PAGE 31

Security:
Kinesis versus NATS

Kinesis as an AWS service is inherently multi-tenant and so is NATS. They both
support encryption in transit and at rest. Authentication and authorization are
purely IAM based for Kinesis. They both have a granularity of access control down
to a stream and all the messages in it and the kind of operations allowed. NATS
supports multiple security models (centralized or delegated) and type of authen-
tication (passwords, JWTs, Certificates) and can integrate with any IdP through
the implementation of an authorization callout service. They differ a little bit when
it comes to cross-tenant data exchange: both allow direct cross account access
(read or write) of a stream from one account to the other, but NATS also gives you
the ability to do subject-filtered cross account mirroring and sourcing instead.

PAGE 32

Appendices
Appendix A
The monthly cost for provisioned Amazon Kinesis consisting of shards, plus enhanced fan-out and data retrieval
costs (source https://calculator.aws/#/createCalculator/KinesisDataStreams).

0 EFO CONSUMER 1 EFO CONSUMER 2 EFO CONSUMERS 3 EFO CONSUMERS 4 EFO CONSUMERS

1 CONSUMER $640.38
(-29%)

547.50+
547.50+

1466.16=
$2,561.16

N/A N/A N/A

2 CONSUMERS -$1,273.8
(+66%)

547.50+
547.50+

1466.16=
$2,561.16

547.50+
1095+

2932.31=
$4,574.81

N/A N/A

3 CONSUMERS -$1,858.89
(+95%)

547.50+
547.50+

1466.16=
$2,561.16

547.50+
1095+

2932.31=
$4,574.81

547.50+
1642.50+
4398.47=
$6,588.47

N/A

4 CONSUMERS N/A N/A N/A 547.50+
1642.50+
4398.47=
$6,588.47

547.50+
2190+

5864.62=
$8,602.12

Figure A.1: KiB @ 45000 (45 MiB/s, 50 shards)

0 EFO CONSUMER 1 EFO CONSUMER 2 EFO CONSUMERS 3 EFO CONSUMERS 4 EFO CONSUMERS

1 CONSUMER $1182.60 1182.60+
1182.6+

3258.13=
$5,623.33

N/A N/A N/A

2 CONSUMERS $1182.60 1182.60+
1182.6+

3258.13=
$5,623.33

1182.60+
2365.20+
6516.26=

$10,064.06

N/A N/A

3 CONSUMERS N/A 1182.60+
1182.6+

3258.13=
$5,623.33

1182.60+
2365.20+
6516.26=

$10,064.06

1182.60+
3547.80+
9774.39=

$14,504.79

N/A

4 CONSUMERS N/A N/A N/A 1182.60+
3547.80+
9774.39=

$14,504.79

1182.60+
4730.40+

13032.52=
$18,945.52

Figure A.2: 5 KiB @ 20000 (100 MiB/s, 108 shards)

© SYNADIA COMMUNICATIONS, INC. PAGE 33

0 EFO CONSUMER 1 EFO CONSUMER 2 EFO CONSUMERS 3 EFO CONSUMERS 4 EFO CONSUMERS

1 CONSUMER $1478.25 1478.25+
1478.25+
4072.67=
$7,029.17

N/A N/A N/A

2 CONSUMERS $1478.25 1478.25+
1478.25+
4072.67=
$7,029.17

1478.25+
2956.50+
8143.34=

$12,578.09

N/A N/A

3 CONSUMERS N/A 1478.25+
1478.25+
4072.67=
$7,029.17

1478.25+
2956.50+
8143.34=

$12,578.09

1478.25+
4434.75+

12218=
$18,131

N/A

4 CONSUMERS N/A N/A N/A 1478.25+
4434.75+

12218=
$18,131

1478.25+
5913+

16290.67=
$23,681.92

Figure A.3: 10 KiB @ 12500 (125 MiB/s, 135 shards)

Appendix B

Amazon Kinesis on-demand monthly cost calculations tables (source: https://calculator.aws/#/createCalculator/
KinesisDataStreams).

0 EFO CONSUMER 1 EFO CONSUMER 2 EFO CONSUMERS 3 EFO CONSUMERS 4 EFO CONSUMERS

0 CONSUMER $9,051.72
(i.e. put cost only)

$14,690.80 $20,329.87 $25,968.95 $31,608.02

1 CONSUMER $13,562 $14,960.80 N/A N/A N/A

2 CONSUMERS $18,074.24 $19,202.06 $20,329.87 N/A N/A

3 CONSUMERS N/A $23,713.32 $24,841.13 $25,968.95 N/A

4 CONSUMERS N/A N/A N/A $30,480.21 $31,608.02

Figure B.1: Total cost for 1 KiB @ 45000 (45 MiB/s)

PAGE 34

0 EFO CONSUMER 1 EFO CONSUMER 2 EFO CONSUMERS 3 EFO CONSUMERS 4 EFO CONSUMERS

0 CONSUMER $20,079.25 $32,610.53 $45,141.81 $57,673.09 $70,204.37

1 CONSUMER $30,104.27 $32,610.53 N/A N/A N/A

2 CONSUMERS $40,129.30 $42,635.55 $45,414.81 N/A N/A

3 CONSUMERS N/A $52,660.58 $55,166.83 $57,673.09 N/A

4 CONSUMERS N/A N/A N/A $67,698.11 $70,204.37

Figure B.2: Total cost for 5 KiB @ 20000 (100 MiB/s)

0 EFO CONSUMER 1 EFO CONSUMER 2 EFO CONSUMERS 3 EFO CONSUMERS 4 EFO CONSUMERS

0 CONSUMER $25,091.76 $40,755.86 $56,419.96 $72,084.06 $87,748.16

1 CONSUMER $37,623.04 $40,755.86 N/A N/A N/A

2 CONSUMERS $50,154.32 $53,287.14 $56,419.96 N/A N/A

3 CONSUMERS N/A $65,818.42 $68,951.24 $72,084.06 N/A

4 CONSUMERS N/A N/A N/A $84,615.34 $87,748.16

Figure B.3: Total cost for 10 KiB @ 12500 (125 MiB/s)

© SYNADIA COMMUNICATIONS, INC. PAGE 35

Author

Jean-Noël Moyne, Field CTO, Synadia

A full-stack CTO with extensive experience in distributed systems, messaging, networking and data
stores and products spanning all of these attributes, including AI infrastructure and edge computing.
Previously: Lava.ai CTO,TIBCO Software Fellow and LBL Staff Scientist

 /in/jean-noel-moyne /JohnnyXmas

PAGE 36 0
15

-T
P-

1-
25

-0
3

	Untitled
	Untitled

